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Abstract. We present B̈acklund transformations (BTs) with parameter for certain classical
integrablen-body systems, namely the many-body generalized Hénon–Heiles, Garnier and
Neumann systems. Our construction makes use of the fact that all these systems may be obtained
as particular reductions (stationary or restricted flows) of the KdV hierarchy; alternatively they
may be considered as examples of the reducedsl(2) Gaudin magnet. The BTs provide exact
time-discretizations of the original (continuous) systems, preserving the Lax matrix and hence all
integrals of motion, and satisfy thespectralityproperty with respect to the B̈acklund parameter.

Introduction

Bäcklund transformations (BTs) are an important aspect of the theory of integrable systems
which have traditionally been studied in the context of evolution equations. However, more
recently there has been much interest in discrete systems or integrable mappings [1, 17].
Within the modern approach to the separation of variables (reviewed by Sklyanin in [16])
this has led to the study of BTs for finite-dimensional Hamiltonian systems [12]. The latter are
canonical transformations including a Bäcklund parameterλ, and apart from being interesting
integrable mappings in their own right they also lead to separation of variables whenn such
mappings are applied to an integrable system withn degrees of freedom. The sequence
of Bäcklund parameters,λj , together with a set of conjugate variables,µj , constitute the
separation variables, and satisfy a new property calledspectralityintroduced in [12].

We proceed to develop these ideas with some new examples of BTs forn-body systems,
namely the many-body generalization of the case-(ii) integrable Hénon–Heiles system, the
Garnier system and the Neumann system on the sphere (see [4]). It is known that the case-(ii)
Hénon–Heiles system is equivalent to the stationary flow of fifth-order KdV [5], while the
Garnier and Neumann systems may be obtained as restricted flows of the KdV hierarchy [19].
Thus we derive BTs for these systems by reduction of the standard BT for KdV, which arises
from the Darboux–Crum transformation [3] for Schrödinger operators. The restriction of the
Darboux transformation to the stationary flows of the modified (mKdV) hierarchy has been
discussed in [6].

In the following section we describe how the reduction works in general, before
specializing these considerations to each particular system and presenting the associated
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generating function for the BT. We note that these systems are examples of the reduced Gaudin
magnet [4], so that we have the following Lax matrix:

L(u) =
n∑
j=1

`j

u− aj +B(u) `j =
(
S3
j S−j
S+
j −S3

j

)
(1)

where (up to scaling) theSj satisfyn independent copies of the standardsl(2) algebra:

{S3
j , S

±
k } = ±2δjkS

±
k {S+

j , S
−
k } = 4δjkS

3
k . (2)

For the H́enon–Heiles and Garnier systems the matrixB(u) is respectively quadratic and linear
in the spectral parameteru, while for the Neumann system it is independent ofu and turns
out to be constant due to the constraint that the particles lie on the sphere (hence the Poisson
algebra (2) must be modified by Dirac reduction).

We have constructed the BT for the (non-reduced)sl(2) Gaudin magnet with quasi-
periodic boundary condition in [10], while some preliminary results on the classical Garnier
system and two-body H́enon–Heiles system first appeared in [8].

Classical integrable systems and KdV

Restricting the BT. As is well known, the Darboux–Crum transformation [3] consists of
mapping the Schrödinger operator∂2

t + V − λ to another operator∂2
t + Ṽ − λ by factorizing

the former and then reversing the order of factorization. Given an eigenfunctionφ satisfying

(∂2
t + V − λ)φ = 0

we may sety = (log[φ])t and then

V = −yt − y2 + λ Ṽ = yt − y2 + λ. (3)

For λ = 0 this is just the Miura map for KdV. Also given another eigenfunctionψ of the
Schr̈odinger operator with potentialV for a different spectral parameteru we have

(∂2
t + V − u)ψ = 0 (∂2

t + Ṽ − u)ψ̃ = 0

where the transformation to the new eigenfunctionψ̃ and its derivative may be given in matrix
form as (

ψ̃t
ψ̃

)
= k

(−y y2 + u− λ
1 −y

)(
ψt
ψ

)
(4)

for any constantk. From (3) follows the standard formula for the Darboux–Bäcklund
transformation of KdV,Ṽ = V + 2(log[φ])tt .

For what follows it will also be necessary to consider a product of eigenfunctions for a
Schr̈odinger operator with potentialV and eigenvalueu,

f = ψψ ′
with Wronskianψtψ ′ − ψψ ′t = 2m. It is well known thatf satisfies the Ermakov–Pinney
equation [2]

fftt − 1
2f

2
t + 2(V − u)f 2 + 2m2 = 0. (5)

If we now transformψ andψ ′ according to (4) then we find a new product of eigenfunctions
f̃ = ψ̃ψ̃ ′ satisfying the same Ermakov–Pinney equation but withV replaced byṼ , given
explicitly by

f̃ = (λ− u)−1 (Z
2 −m2)

f
Z = 1

2
ft − yf (6)
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where we have setk2 = (λ−u)−1 to ensure that the transformed eigenfunctions have the same
Wronskian 2m. It is also straightforward to show that, in terms off̃ , the quantityZ can be
written asZ = − 1

2 f̃t − yf̃ (see [9]).
We can now describe how this transformation restricts to the finite-dimensional

Hamiltonian systems presented below. The systems are expressed in variables(qj , pj ) which
appear in the Lax matrix (1) via the identification [11, 4]

S3
j = pjqj S−j = −p2

j +
m2
j

q2
j

S+
j = q2

j .

For Hénon–Heiles and Garnier the non-vanishing Poisson brackets are the standard ones
{pj , qk} = δjk which provide a realization of the algebra (2); for the Neumann system on
the sphere the bracket must be modified by Dirac reduction.

All of the systems are Liouville integrable, and thus have a complete set of Hamiltonians
in involution, but for these purposes we concentrate on the Hamiltonianh generating the flow
corresponding tot above (in KdV theory this is usually denotedx, the spatial variable). For
this flow the Lax equationLt = [N,L] is the compatibility condition for the linear system

L(u)9 = v9 9t = N9 N =
(

0 u− V (qj , pj )
1 0

)
. (7)

Observe that the second part of the linear system is just a Schrödinger equation for the potential
V ; for Neumann and Garnier this is a function of(qj , pj ) for j = 1, . . . , n, while for Hénon–
Heiles there is an extra pair of conjugate variables(qn+1, pn+1) such thatV ≡ qn+1.

The equations of motion generated by this Hamiltonian take the formqj,t = pj and

pj,t = qj,tt = (aj − V (qk, pk))qj −
m2
j

q3
j

(8)

for j = 1, . . . , n; for Hénon–Heiles there are also equations forqn+1 andpn+1 = qn+1,t .
The important thing to observe is that (8) is equivalent to the fact thatS+

j = q2
j satisfies the

Ermakov–Pinney equation (5) corresponding to a Schrödinger equation with potentialV and
eigenvalueaj . Thus to obtain a B̈acklund transformation for these many-body systems we
simply apply a Darboux–Crum transformation (3) to the potentialV = V (qj , pj ) to obtain
Ṽ = V (q̃j , p̃j ), and then we know that the solutions of the Ermakov–Pinney equation must
transform according to (6). By this procedure we may explicitly construct the BT for the many-
body systems below (or for any restricted flow of KdV), and it is then simple to calculate the
generating functionF(qj , q̃j ) of this canonical transformation, such that

dF =
∑
j

(pjdqj − p̃j dq̃j ).

The discrete Lax equation for the BT,

ML = L̃M
where L̃ = L(q̃j , p̃j ; u), is necessary to ensure the preservation of the spectral curve
det(v − L(u)) = 0 (so that all the Hamiltonians in involution are preserved). This follows
immediately from the properties of the Darboux–Crum transformation, since we know that
the vector9 in the linear system (7) must transform according to (4), and hence we may take
(settingk = 1)

M =
(−y y2 + u− λ

1 −y
)
. (9)
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Of course we must determiney as a function of the dynamical variables. In the Garnier and
Hénon–Heiles cases it turns out that the potential depends on coordinates only,V = V (qj ),
and so by adding the two equations in (3) we obtain

y(qj , q̃j ) = ±
√
λ− 1

2(V + Ṽ )

to obtain the correct continuum limit of the discrete dynamics it is necessary to take the negative
branch of the square root (see [8, 9]). For the Neumann systemV depends on both coordinates
and momenta, so the above does not yieldy(qj , q̃j ).

There is another way of writingLwhich arises more naturally via reduction from the zero
curvature representation of the KdV hierarchy [4, 5, 19], namely

L(u) =
( 1

25t − 1
25tt + (u− V )5

5 − 1
25t

)
where

5(u) =
n∑
j=1

q2
j

u− aj +1(u). (10)

1 is a polynomial inu fixing the dynamical termB in (1); we shall present the appropriate1
andB in each case below. Clearly thet derivatives of5 can be rewritten using the equations
of motion to yield (1).

Finally if we write the (hyper-elliptic) spectral curve as

v2 = R(u)
then it is easy to check that the spectrality property [12] is satisfied for these systems, in the
sense that defining the conjugate variable toλ by

µ = −2
∂F

∂λ

we find that

L(λ)� = µ�
with eigenvector� = (y, 1)T , or in other wordsµ2 = R(λ) so that(λ, µ) is a point on the
spectral curve. Note that (as for the examples in [10, 12]) this eigenvector spans the kernel of
M,

M(λ)� = 0.

We can also writey explicitly in terms of both the old and the new variables related by the BT,
thus:

y(qj , pj ) = 5t(λ) + 2µ

25(λ)
y(q̃j , p̃j ) = − (5̃t (λ)− 2µ)

25̃(λ)
(11)

clearly we denotẽ5(λ) = 5(q̃j , p̃j ; λ).

Generalized H́enon–Heiles system.For the many-body generalization of case-(ii) integrable
Hénon–Heiles system, the Hamiltonian generating thet flow takes the form

h = 1

2

n+1∑
j=1

p2
j + q3

n+1 + qn+1

(
1

2

n∑
j=1

q2
j + c

)
− 1

2

n∑
j=1

(
ajq

2
j +

m2
j

q2
j

)
.

The original case-(ii) integrable H́enon–Heiles system corresponds ton = 1 with c = mj =
aj = 0. The link between stationary fifth-order KdV and the type-(ii) system was noted by
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Fordy in [5], although this was anticipated in the work of Weiss [18], who used Painlevé
analysis to derive a BT and associated linear problem (a similar result also appears in [13]).
None of these authors wrote a BT explicitly as a canonical transformation with parameter,
although (without parameter) this was done for a non-autonomous version in [7].

For the Lax matrixL of the generalized(n + 1)-body H́enon–Heiles system we have
1 = −16u− 8qn+1 so that the extra termB(u) is given by

B =
( −4pn+1 E

−16u− 8qn+1 4pn+1

)
E = −16u2 + 8qn+1u− 4q2

n+1−
n∑
j=1

q2
j − 4c.

The equations of motion forh imply that the squares of the firstn coordinatesq2
j satisfy the

Ermakov–Pinney equation (5) form = mj with

V = qn+1

and eigenvalueaj . Thus the BT for the system can be calculated directly by applying the
Darboux–Crum transformation toV = qn+1, to yield Ṽ = q̃n+1, and applying (6) to eachq2

j

for j = 1, . . . , n.
After some calculation the generating function for this canonical transformation is found

to be

F(qj , q̃j ; λ) =
n∑
j=1

(
Zj +

mj

2
log

[
Zj −mj
Zj +mj

])
+

16

5
y5 + 4(qn+1 + q̃n+1)y

3

+

(
2q2

n+1 + 2qn+1q̃n+1 + 2q̃2
n+1 + 1

2

n∑
j=1

(q2
j + q̃2

j ) + 2c

)
y

where we have found it convenient to use the quantitiesZj(qj , q̃j ) andy(qj , q̃j ) defined by

Z2
j = m2

j + (λ− aj )q2
j q̃

2
j (12)

and

y = −
√
λ− 1

2(qn+1 + q̃n+1).

In order to check the spectrality property, we have explicitly found that the eigenvalue of
L(λ) with eigenvector� = (y, 1)T can be written as

µ(qj , q̃j ; λ) = −
n∑
j=1

Zj

λ− aj −
1

y

∂F

∂y

which precisely equals−2∂F
∂λ

as required.

Garnier system. For the Garnier system thet flow is generated by the Hamiltonian

h = 1

2

n∑
j=1

p2
j +

1

2

( n∑
j=1

q2
j

)2

− 1

2

n∑
j=1

(
ajq

2
j +

m2
j

q2
j

)
.

This differs from the traditional Garnier system as in [8, 15, 19] by the inclusion of extra inverse
square terms. The Newton equations for theqj are

qj,tt + 2

(∑
k

q2
k

)
qj = ajqj −

m2
j

q3
j

so clearly for the standard restricted flows of KdV [19], whenmj = 0, eachqj is an
eigenfunction of a Schrödinger operator with potential

V = 2
∑
j

q2
j
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and eigenvalueaj , while in generalq2
j is a product of eigenfunctions satisfying the Ermakov–

Pinney equation [2] form = mj .
The Lax matrix of the Garnier system has1 = 1, soL takes the form (1) with

B =
(

0 u−∑j q
2
j

1 0

)
.

Applying the Darboux–Crum transformation we obtain a new potential

Ṽ = 2
∑
j

q̃2
j

and the corresponding BT induced on the Garnier system is equivalent to gaugingL by the
matrixM of the form (9) with

y = −
√
λ−

∑
j

(q2
j + q̃2

j ).

Finally, we can calculate the generating function for this BT, which may be written as
follows:

F(qj , q̃j ; λ) =
n∑
j=1

(
Zj +

mj

2
log

[
Zj −mj
Zj +mj

])
− 1

3
y3

wherey(qj , q̃j ) is as above andZj is given by the same expression (12) as for Hénon–Heiles.
In [8] we derived this generating function for the special casemj = 0 when the logarithm
terms do not appear. To check spectrality we notice thatL(λ) has eigenvalue

µ(qj , q̃j ; λ) = −
n∑
j=1

Zj

λ− aj + y

with eigenvector�, and so we see thatµ = −2∂F
∂λ

.

Neumann system on the sphere.For the Neumann system thet flow is generated by

h = 1

2

n∑
j=1

p2
j −

1

2

n∑
j=1

(
ajq

2
j +

m2
j

q2
j

)
.

Once again this has extra inverse square terms compared with the standard Neumann system
[14, 15]. The Poisson bracket for this system is modified by constraining the particles to lie
on a sphere, so that

(q, q) ≡
∑
j

q2
j = const (q, p) ≡

∑
j

qjpj = 0 (13)

which results in the non-vanishing Dirac brackets

{pj , qk} = δjk − qjqk

(q, q)
{pj , pk} = qjpk − qkpj

(q, q)
. (14)

With this bracket the Hamilton equations areqj,t = pj and (8) with

V = (q, q)−1
∑
j

(
p2
j + ajq

2
j −

m2
j

q2
j

)
.

The Lax matrix for the Neumann system arises by setting1 = 0, which in (1) gives the
following matrixB:

B =
(

0 (q, q)

0 0

)
.
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In fact if we start from the linear system (7) and leaveV unspecified then (8) as well as the
constraint(q, q)t = 0 are consequences of the Lax equation, and together these are sufficient
to determine the form ofV ; this is also how the equations for the constrained Neumann system
arise in a Lagrangian approach [14].

Given that the phase space is now degenerate with two Casimirs given by (13), it would
appear that the standard sort of generating function will no longer be appropriate for describing
a BT. It turns out that we can apply the Darboux–Crum transformation as before, and transform
the quantitiesq2

j according to (6). In this way we obtain new variablesq̃j (qk, pk) and
p̃j (qk, pk), which are naturally written with the use of the quantityy(qk, pk) given by the
first formula in (11); on the Lax matrix this transformation arises by gauging withM as in
(9). Similarly, the transformation can be inverted to giveqj (q̃k, p̃k) andpj (q̃k, p̃k) written in
terms ofy(q̃k, p̃k) given by the right-hand formula of (11).

However, it would still be nice to write a generating function for this transformation. We
have found that if we formally take

F(qj , q̃j ; λ) =
n∑
j=1

(
Zj +

mj

2
log

[
Zj −mj
Zj +mj

]
+

1

2
y(q2

j − q̃2
j )

)
with Zj given by (12) as usual, and regardy as a sort of Lagrange multiplier (independent of
the coordinates andλ), then we do indeed obtain the correct expressions

pj = ∂F

∂qj
p̃j = − ∂F

∂q̃j

but these containy which is unspecified. If we then require that the constraints (13) are
preserved under the BT applied from old to new variables or vice versa, then in either direction
the constraints are preserved if and only ify satisfies a quadratic equation with solution
given respectively by formulae (11). Alternatively if we require spectrality then the second
component of the equationL(λ)� = µ� gives

µ(qj , q̃j ; λ) = −
n∑
j=1

Zj

λ− aj = −2
∂F

∂λ

as required, while the first component gives (after making use of formula (12) and the BT)

µ = −
n∑
j=1

Zj

λ− aj +
1

y

∑
j

(q2
j − q̃2

j ).

Hence spectrality requires that the second term vanishes, and so the first constraint (13) is
preserved; the preservation of the second constraint is then an algebraic consequence of the
BT.

Thus we see that for this BT we can write the new variables as functions of the old and vice
versa, but a formula fory(qj , q̃j ; λ) is lacking. Also this discretization of the Neumann system
is apparently new, since it is exact (preserving the Lax matrix for the continuous system) unlike
the Veselov or Ragnisco discretizations discussed in [14].

Conclusions

It would also be interesting to look at BTs with parameter in the non-autonomous case [7], where
deformation with respect to the Bäcklund parameter would probably have to be introduced
(corresponding to the associated isomonodromy problem).
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