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Abstract. We present Bcklund transformations (BTs) with parameter for certain classical
integrable n-body systems, namely the many-body generalizezhdh—Heiles, Garnier and
Neumann systems. Our construction makes use of the fact that all these systems may be obtained
as particular reductions (stationary or restricted flows) of the KdV hierarchy; alternatively they
may be considered as examples of the redu¢é?) Gaudin magnet. The BTs provide exact
time-discretizations of the original (continuous) systems, preserving the Lax matrix and hence all
integrals of motion, and satisfy tiepectralityproperty with respect to the&klund parameter.

Introduction

Backlund transformations (BTs) are an important aspect of the theory of integrable systems
which have traditionally been studied in the context of evolution equations. However, more
recently there has been much interest in discrete systems or integrable mappings [1, 17].
Within the modern approach to the separation of variables (reviewed by Sklyanin in [16])
this has led to the study of BTs for finite-dimensional Hamiltonian systems [12]. The latter are
canonical transformations including @éklund parameter, and apart from being interesting
integrable mappings in their own right they also lead to separation of variablesméerh
mappings are applied to an integrable system wittlegrees of freedom. The sequence

of Backlund parameters,;, together with a set of conjugate variables, constitute the
separation variables, and satisfy a new property calbedtralityintroduced in [12].

We proceed to develop these ideas with some new examples of Bisbfmty systems,
namely the many-body generalization of the case-(ii) integral@iead—Heiles system, the
Garnier system and the Neumann system on the sphere (see [4]). Itis known that the case-(ii)
Hénon-Heiles system is equivalent to the stationary flow of fifth-order KdV [5], while the
Garnier and Neumann systems may be obtained as restricted flows of the KdV hierarchy [19].
Thus we derive BTs for these systems by reduction of the standard BT for KdV, which arises
from the Darboux—Crum transformation [3] for Sodinger operators. The restriction of the
Darboux transformation to the stationary flows of the modified (mKdV) hierarchy has been
discussed in [6].

In the following section we describe how the reduction works in general, before
specializing these considerations to each particular system and presenting the associated
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generating function for the BT. We note that these systems are examples of the reduced Gaudin
magnet [4], so that we have the following Lax matrix:

Nl s3s;
tw=3 e o= %) @
J J

j=1 J
where (up to scaling) th&; satisfyn independent copies of the standar(®) algebra:
{83, 57} = £26,,5¢ (ST, 87} =48, SE. )

For the Henon—Heiles and Garnier systems the magiix) is respectively quadratic and linear
in the spectral parametar while for the Neumann system it is independeni:aind turns
out to be constant due to the constraint that the particles lie on the sphere (hence the Poisson
algebra (2) must be modified by Dirac reduction).

We have constructed the BT for the (non-reduced®) Gaudin magnet with quasi-
periodic boundary condition in [10], while some preliminary results on the classical Garnier
system and two-body #hon—Heiles system first appeared in [8].

Classical integrable systems and KdV

Restricting the BT. As is well known, the Darboux—Crum transformation [3] consists of
mapping the Sclidinger operatod? + V — A to another operatdt? + V — A by factorizing
the former and then reversing the order of factorization. Given an eigenfurctatisfying

(32+V —1)¢p=0
we may sety = (log[¢]), and then

V=—y—»+i  V=y -+ 3
For A = 0 this is just the Miura map for KdV. Also given another eigenfunctiprof the
Schiddinger operator with potentid for a different spectral parametemwe have

(32+V —u)y =0 (32+V —u)y =0

where the transformation to the new eigenfunctjoand its derivative may be given in matrix

form as i
(3)-4(2 75)(2)

for any constant. From (3) follows the standard formula for the DarbougeRlund
transformation of KdVy = V + 2(log[¢]).:.

For what follows it will also be necessary to consider a product of eigenfunctions for a
Schibdinger operator with potentid and eigenvalue,

f=yy
with Wronskiany, ¢ — ¢, = 2m. Itis well known thatf satisfies the Ermakov—Pinney
equation [2]

fhu=3f2+2(V —u) f?+2m* = 0. (5)
If we now transformys andy’ according to (4) then we find a new product of eigenfunctions

f = Y’ satisfying the same Ermakov—Pinney equation but witheplaced byV, given
explicitly by

2 _ .2
~:()\_u)_1(Z me)

1
7 7 Z=>fi-yf (6)
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where we have s&f = (» —u)~! to ensure that the transformed eigenfunctions have the same
Wronskian 2:. It is also straightforward to show that, in terms ffthe quantityZ can be
written asZ = —3 f, — y f (see [9]).

We can now describe how this transformation restricts to the finite-dimensional
Hamiltonian systems presented below. The systems are expressed in vatiales which
appear in the Lax matrix (1) via the identification [11, 4]

m2

S$=pja;  S;=-pit— S =4}
qj
For Henon—Heiles and Garnier the non-vanishing Poisson brackets are the standard ones
{pj. qx} = & which provide a realization of the algebra (2); for the Neumann system on
the sphere the bracket must be modified by Dirac reduction.

All of the systems are Liouville integrable, and thus have a complete set of Hamiltonians
in involution, but for these purposes we concentrate on the Hamilt@gnigamerating the flow
corresponding te above (in KdV theory this is usually denotedthe spatial variable). For
this flow the Lax equatiolk, = [N, L] is the compatibility condition for the linear system

1 0

Observe that the second part of the linear system is just @&8iciger equation for the potential
V; for Neumann and Garnier this is a function(gf, p;) for j = 1, ..., n, while for H&non-
Heiles there is an extra pair of conjugate varialilgs:, p,+1) such thatV = g,+1.

The equations of motion generated by this Hamiltonian take the §orm= p; and

L)V = oW U, = NW N=<0 ”_V("/’p/)). @

m2
Pii =qju = (a; — Vg, pr))qg; — q_é 8)
J
for j = 1,...,n; for Henon—Heiles there are also equationsdpn and p,+1 = Gu+1.-
The important thing to observe is that (8) is equivalent to the factSpai: q]? satisfies the
Ermakov—Pinney equation (5) corresponding to a 8dimger equation with potentid and
eigenvaluez;. Thus to obtain a Bcklund transformation for these many-body systems we
simply apply a Darboux—Crum transformation (3) to the poteritiak V(q;, p;) to obtain
V = V(g;, p;), and then we know that the solutions of the Ermakov—Pinney equation must
transform according to (6). By this procedure we may explicitly construct the BT for the many-
body systems below (or for any restricted flow of KdV), and it is then simple to calculate the
generating functiorF (¢;, ¢;) of this canonical transformation, such that

dF = Z(pjdqj —_ ﬁjdéj)
J

The discrete Lax equation for the BT,
ML =1LM

where L = L(q;, pj;u), is necessary to ensure the preservation of the spectral curve
det(v — L(u)) = 0 (so that all the Hamiltonians in involution are preserved). This follows
immediately from the properties of the Darboux—Crum transformation, since we know that
the vectorl in the linear system (7) must transform according to (4), and hence we may take
(settingk = 1)

M= (—1y e A). (©)
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Of course we must determineas a function of the dynamical variables. In the Garnier and
Hénon-Heiles cases it turns out that the potential depends on coordinate® ealy, (¢;),
and so by adding the two equations in (3) we obtain

¥(g;.d;) = £ /A — F(V+V)

to obtain the correct continuum limit of the discrete dynamics itis necessary to take the negative
branch of the square root (see [8, 9]). For the Neumann sygtdepends on both coordinates
and momenta, so the above does not yiglg;, 4;).

There is another way of writin§y which arises more naturally via reduction from the zero
curvature representation of the KdV hierarchy [4, 5, 19], namely

L) = (%“f —3 Tl + (u - V)“)

I — 311,
where
n q2
M) =Y —I—+Aw). (10)
=10

A is a polynomial inu fixing the dynamical tern®B in (1); we shall present the appropriate
and B in each case below. Clearly thelerivatives oflT can be rewritten using the equations
of motion to yield (1).

Finally if we write the (hyper-elliptic) spectral curve as

v? = R(u)

then it is easy to check that the spectrality property [12] is satisfied for these systems, in the
sense that defining the conjugate variablé tay

oF
=2
H an
we find that
LO)Q = uQ

with eigenvectoi2 = (y, 1)7, or in other wordsu? = R()) so that(x, n) is a point on the
spectral curve. Note that (as for the examples in [10, 12]) this eigenvector spans the kernel of
Ml

M(O)Q =0.
We can also write explicitly in terms of both the old and the new variables related by the BT,
thus:
I, (1) + 2u (1,00 —2u)

TG A =Ty (11)

y(gj. pj) =
clearly we denotél(1) = T1(q;, p;; A)-

Generalized lnon-Heiles system.For the many-body generalization of case-(ii) integrable
Hénon—Heiles system, the Hamiltonian generating thaw takes the form

n+l

1 2 3 1 - 2 1 - 2 I’I’lf
hzézlpj+qn+1+qn+1 E,Zqu+c _EZ aqu,-"'? )
J= j= :

j=1
The original case-(ii) integrable&hon—Heiles system correspondsite= 1 withc = m; =
a; = 0. The link between stationary fifth-order KdV and the type-(ii) system was noted by
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Fordy in [5], although this was anticipated in the work of Weiss [18], who used Painlev
analysis to derive a BT and associated linear problem (a similar result also appears in [13]).
None of these authors wrote a BT explicitly as a canonical transformation with parameter,
although (without parameter) this was done for a non-autonomous version in [7].

For the Lax matrixL of the generalizedn + 1)-body Henon—-Heiles system we have
A = —16u — 8¢,+1 SO that the extra termB () is given by

—4ppe1 E 2 2 ~
B = E =-16u“+8g, — —E - — dc.
(—1614 — 8¢u+1 4py,+1> 8¢+ 41 ~ q;

The equations of motion far imply that the squares of the firstcoordinates;j? satisfy the
Ermakov—-Pinney equation (5) for = m; with
V=¢qu

and eigenvalue;. Thus the BT for the system can be calculated directly by applying the
Darboux—Crum transformation 6 = g1, to yield V = §,.1, and applying (6) to eac.lﬁj?
forj=1,...,n.

After some calculation the generating function for this canonical transformation is found
to be

. 1 m; Zi—m; 16 .
F(qj,q;;2) = Z (Zj + 7j log [ﬁ}) + gys + M Gne1 + Gue1)y°
j=1 J J

n
+(2q3+1 + 2qn+lén+1 + 2‘73{]_ + % Z(qu + 6712) + ZC))’
Jj=1

where we have found it convenient to use the quantifigg ;, ¢;) andy(q;, ;) defined by

ZJZ = mf + (A — aj)qqujz (12)

and

y= _\/)\ - %(Qnﬂ. +5n+l)-
In order to check the spectrality property, we have explicitly found that the eigenvalue of
L(») with eigenvectog = (y, 1) can be written as
~ & Z; 10F
w(g. G =—y —2

j=1

A—a; ydy

which precisely equalsz% as required.

Garnier system. For the Garnier system thdlow is generated by the Hamiltonian

1 1 n 2 1 mZ
h= 521’;2*5(2%2) -5 (“jqu+q_zj)'
j=1 j=1 J
This differs from the traditional Garnier system asin [8, 15, 19] by the inclusion of extra inverse
square terms. The Newton equations forgheare
m?

qj. +2<ZQ1§>‘U =ajq; — _é
3 q;
so clearly for the standard restricted flows of KdV [19], when = 0, eachg; is an
eigenfunction of a Sclkdinger operator with potential

v=2yd
J
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and eigenvalue;, while in generaly]? is a product of eigenfunctions satisfying the Ermakov—
Pinney equation [2] fom = m;.
The Lax matrix of the Garnier system has= 1, soL takes the form (1) with

B:(? “_%jqu).

Applying the Darboux—Crum transformation we obtain a new potential
v =2y 4
j

and the corresponding BT induced on the Garnier system is equivalent to gdubinthe
matrix M of the form (9) with

y=— A= (G?+3>.
VT

Finally, we can calculate the generating function for this BT, which may be written as
follows:

! m; Z;,—m; 1
Fa:.0:°)) = Z. +—log| ZL—L ) = =43
@452 2) ,X_;( T2 g[Z.f +m; D 3
wherey(q;, g;) is as above and is given by the same expression (12) as féndn—Heiles.
In [8] we derived this generating function for the special case= 0 when the logarithm
terms do not appear. To check spectrality we notice Miay has eigenvalue
B n Z
w(gp, G N =—y —2

=1

+
)\._aj Y

with eigenvectoK?2, and so we see that = —2%—f.

Neumann system on the spher&or the Neumann system thdélow is generated by

1v-., 1¢ ., M
h = 521’1’ - 52(“19/ =
j=1 j=1 4;
Once again this has extra inverse square terms compared with the standard Neumann system
[14,15]. The Poisson bracket for this system is modified by constraining the particles to lie
on a sphere, so that

@@ =) ¢?=const  (q.p)= q;p;=0 (13)
J j
which results in the non-vanishing Dirac brackets
qj9xk q4jPk — 4qkDj
{pjsaky =8k — ——— {pj, Pk} = ——7—. (14)
) A 4,9

With this bracket the Hamilton equations arg = p; and (8) with

m?
V=) <p§+a,-q,? -
j 9j
The Lax matrix for the Neumann system arises by setting 0, which in (1) gives the
following matrix B:

_ (9 (4.9
5= (3 90).
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In fact if we start from the linear system (7) and leavaunspecified then (8) as well as the
constraint(g, ¢); = 0 are consequences of the Lax equation, and together these are sufficient
to determine the form of ; this is also how the equations for the constrained Neumann system
arise in a Lagrangian approach [14].

Given that the phase space is now degenerate with two Casimirs given by (13), it would
appear that the standard sort of generating function will no longer be appropriate for describing
a BT. It turns out that we can apply the Darboux—Crum transformation as before, and transform
the quantitiequ? according to (6). In this way we obtain new variabggq, pr) and
P (qx, pr), which are naturally written with the use of the quantityy,, px) given by the
first formula in (11); on the Lax matrix this transformation arises by gauging withs in
(9). Similarly, the transformation can be inverted to giyégx, pi) andp;(gx, px) Written in
terms ofy(gx, pr) given by the right-hand formula of (11).

However, it would still be nice to write a generating function for this transformation. We
have found that if we formally take

n

3 mj Zi—mj|, 1 5
. L. — 4+ L + — T —q°
F(qj,qj; M) ; (Z] 2 log [ Z +m, } 5Y4; —qj)
with Z; given by (12) as usual, and regarés a sort of Lagrange multiplier (independent of
the coordinates and), then we do indeed obtain the correct expressions
oF - oF
=5 Pj=—T=
8qj J qu
but these contairy which is unspecified. If we then require that the constraints (13) are
preserved under the BT applied from old to new variables or vice versa, then in either direction
the constraints are preserved if and onlyyifsatisfies a quadratic equation with solution
given respectively by formulae (11). Alternatively if we require spectrality then the second
component of the equatian(A)Q2 = u 2 gives
! Z; oF
'7~';)" = - ! =_2_
1(q;sq;; 2 ; T—a o

as required, while the first component gives (after making use of formula (12) and the BT)

~ 7 1 2_ =2
- _ + = > — §%).
m Zk—aj y;(q, 7B

j=1

Dj

Hence spectrality requires that the second term vanishes, and so the first constraint (13) is
preserved; the preservation of the second constraint is then an algebraic consequence of the
BT.

Thus we see that for this BT we can write the new variables as functions of the old and vice
versa, butaformulafoy(q;, g;; A) is lacking. Also this discretization of the Neumann system
is apparently new, since itis exact (preserving the Lax matrix for the continuous system) unlike
the Veselov or Ragnisco discretizations discussed in [14].

Conclusions

Itwould also be interesting to look at BTs with parameter in the non-autonomous case [7], where
deformation with respect to thedBklund parameter would probably have to be introduced
(corresponding to the associated isomonodromy problem).
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